All Work
Title
Topic
-
‘Associations Between Cognitive Resources and Emotion Regulation Tactics in an Adult Lifespan Sample’
“The current study investigated how trait-level cognitive capacity relates to emotion regulation tactic preferences in everyday life in adulthood and old age. 51 younger adults (ages 18-39), 53 middle-aged adults (ages 40-59), and 55 older adults (ages 60+) completed measures of working memory and verbal fluency, as well as 21 days of experience sampling. On each survey, participants indicated if they had regulated since the last survey and if so, what emotion regulation strategies they used and how they implemented that strategy through specific emotion regulation tactics.” Find the paper and full list of authors at Innovation in Aging.
-
‘Modeling the Role of Immune Cell Conversion in the Tumor-Immune Microenvironment’
“Tumors develop in a complex physical, biochemical, and cellular milieu, referred to as the tumor microenvironment. Of special interest is the set of immune cells that reciprocally interact with the tumor, the tumor-immune microenvironment (TIME). … While tumor cells are known to induce immune cells to switch from anti-tumor to pro-tumor phenotypes, this type of ecological interaction has been largely overlooked. To address this gap in cancer modeling, we develop a minimal, ecological model of the TIME with immune cell conversion, to highlight this important interaction and explore its consequences.” Find the paper and authors list at Bulletin of Mathematical…
-
‘Switching the Spin Cycloid in BiFeO3 With an Electric Field’
“Bismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3 are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3 in real space.” Find the paper and full list of authors at Nature Communications.
-
Zheng receives Leadership for Inclusion and Diversity Award
Yi Zheng, associate professor of mechanical and industrial engineering, received the 2024 Leadership for Inclusion and Diversity Award from the Commonwealth of Massachusetts Asian American Pacific Islanders Commission. Zheng presented a speech at the 16th Annual Unity Dinner before Massachusetts Lieutenant Governor Kim Driscoll, State Treasurer Deborah B. Goldberg and State Auditor Diana DiZoglio. The award recognized Zheng “as an exceptional leader who has demonstrated an unwavering commitment to fostering inclusivity and diversity.”
-
Weng receives Food Allergy Science Initiative funding to understand role of phytochemicals in allergies
“This project investigates the role of phytochemicals in food allergies, focusing on identifying plant secondary metabolites that influence allergic reactions and developing potential therapeutics for food allergies. Jing-Ke Weng’s lab aims to advance understanding of food allergy causes and mechanisms through interdisciplinary research on plant chemistry and its interaction with the human immune system, with the ultimate goal of creating new treatments for food allergies.”
-
Weng receives USDA funding to explore cyclic peptide biosynthesis
“Plants offer an enormous chemodiversity that is essential for discovering new medicines, with 25% of all FDA-approved drugs coming from plants. However, the production of plant-derived natural products faces significant challenges. Our research [explores] the biosynthesis and bioengineering of lyciumins and moroidins, two classes of branched cyclic peptides with potential pharmaceutical applications. Lyciumins, inhibitors of the human angiotensin-converting enzyme, come from the Goji berry, while moroidins, derived from the Australian stinging tree, exhibit anti-mitotic activities suitable for cancer therapy. … We propose to advance our understanding of RiPP diversity and biosynthesis, supporting new strategies for their engineering and application in…
-
Joshi, Nguyen receive patent for ‘therapeutic protein’-secreting bacteria
Associate professor of chemistry and chemical biology Neel S. Joshi, with student Peter Nguyen, received a patent for “Engineered bacteria that secrete therapeutic polypeptides, pharmaceutical compositions comprising the bacteria, methods for producing recombinant polypeptides and methods for using the bacteria for diagnostic and therapeutic purposes.”
-
Patent for network slicing policies
“Electrical and computer engineering assistant research professor Salvatore D’oro, assistant professor Francesco Restuccia and professor Tommaso Melodia were awarded a patent for ‘Methods for the Enforcement of Network Slicing Policies in Virtualized Cellular Networks.'”
-
‘A Gradient of Unisons: The Emergent Superunit in Collective Action’
“As design practice shifts from designing material goods to shaping and facilitating social situations, there is a compelling need to develop a richer understanding of specific social relations as facilitated by design. This article explores bodied unisons—enkinaesthetic entrainments of self + other. We present these unison acts as identifiable patterns of behavior that are observable when people coordinate, patterns that foster a move from individual to superunit.” Find the paper and full list of authors at Design Issues.
-
‘Quasi-Fermi Liquid Behavior in a One-Dimensional System of Interacting Spinless Fermions’
“We present numerical evidence for a paradigm in one-dimensional interacting fermion systems, whose phenomenology has traits of both Luttinger liquids and Fermi liquids. This state, dubbed a quasi-Fermi liquid, possesses a discontinuity in its fermion occupation number at the Fermi momentum. The excitation spectrum presents particlelike quasiparticles and absence of holelike quasiparticles, giving rise instead to edge singularities.” Find the paper and full list of authors at Physical Review B.
-
‘Rigor With Machine Learning From Field Theory to the Poincaré Conjecture’
“Despite their successes, machine learning techniques are often stochastic, error-prone and blackbox. How could they then be used in fields such as theoretical physics and pure mathematics for which error-free results and deep understanding are a must? In this Perspective, we discuss techniques for obtaining zero-error results with machine learning, with a focus on theoretical physics and pure mathematics. Non-rigorous methods can enable rigorous results via conjecture generation or verification by reinforcement learning. We survey applications of these techniques-for-rigor ranging from string theory to the smooth 4D Poincaré conjecture in low-dimensional topology.” Find the authors list in Nature Reviews: Physics.
-
Müftü and Özdemir receive Army Research Laboratory grant
“Sinan Müftü, College of Engineering distinguished professor of mechanical and industrial engineering, and Ozan Özdemir, assistant professor of mechanical and industrial engineering, are leading a team that was awarded a $4.38 million grant from the Army Research Laboratory to advance wire-arc direct energy deposition for large-format metal additive manufacturing.”
-
‘Carvings in Stone: Design Research for Public Health Investigations in the Age of COVID-19’
“The COVID-19 pandemic presented complex challenges to public health research involving human subjects, necessitating creative thinking to maintain safe and productive qualitative data collection. In this paper, we describe how an interdisciplinary team overcame these challenges by translating in-person workshops into at-home design probes to explore connections between university students’ climate change attitudes and their health. … This case study provides insight into how pandemic-imposed restrictions presented a novel opportunity to reconceptualize how we collect qualitative data in public health research and summarizes the unique benefits of integrating such design-based approaches.” Find the paper and authors list at Design for…
-
Zhang receives NSF grant to harness magnonic nonreciprocity
“Electrical and computer engineering assistant professor Xufeng Zhang, in collaboration with Boston University, was awarded a $420,000 NSF grant for ‘Harnessing Magnonic Nonreciprocity Through Dissipation Engineering.’ This project will investigate the principals of energy dissipation in magnonic systems and engineering approaches for manipulating dissipations.”
-
‘An Empirical Study of How Service Designers Use Metrics’
“Scholars have advocated for the importance of evaluation in service design, proposing comprehensive frameworks for such integration in design processes. This research seeks to complement existing theoretical studies by providing empirical insights into the utilization of metrics by practicing service designers. Our study presents findings derived from a global survey and in-depth interviews conducted with service designers from eleven countries.” Find the paper and full list of authors at She Ji: The Journal of Design, Economics, and Innovation.
-
Ghoreishi receives funding to study AI in harsh environments
“Fatemeh Ghoreishi, assistant professor of civil engineering, received a $60,000 grant from the U.S. Army for ‘BRITE: Bayesian Inference and Preference Learning for Unknown and Time-Sensitive Environments’ to further [her] research on AI systems in unpredictable environments.”
-
Abur receives NSF grant to integrate renewable energy into power grids
“Electrical and computer engineering professor Ali Abur was awarded a $350,000 grant from the NSF for ‘Robust Transient State Estimation for Three-Phase Power Systems.’ The project aims to facilitate the efficient integration of inverter-based renewable energy sources into future generation of power systems.”
-
‘Milk Exosomes Anchored With Hydrophilic and Zwitterionic Motifs Enhance Mucus Permeability for Applications in Oral Gene Delivery’
“Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface.” Find the paper and full list of authors at Biomaterials Science.